

Vincotech

Agenda

- 01 / Charger at a Glance
- 02 / Charger Trends
- 03 / Charger Market
- 04 / Power Converter Topologies
- 05 / Power Modules for DC Charger
- 06 / <u>DC Charger Concepts Vincotech</u> <u>reference designs</u>

Agenda

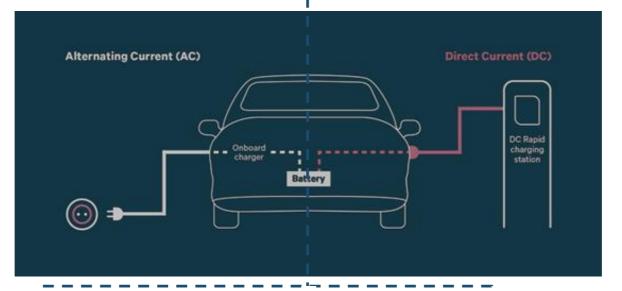
- 01 / Charger at a Glance
- 02 / Charger Trends
- 03 / Charger Market
- 04 / Power Converter Topologies
- 05 / Power Modules for DC Charger
- 06 / <u>DC Charger Concepts Vincotech</u> <u>reference designs</u>

01 / Charger at a Glance

Charging Modes

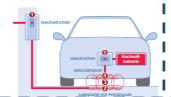
VIN Target Application

Slow charging



AC charging

- Conversion done by Onboard charger (OBC)
- Power limited by OBC, most commonly rated 7kW or 11kW, max. 22kW


DC charging

- Off-board charger
- Highest power up to 350kW
- Current nominal power lower or equal to 50kW
- Shortest charging times



I Inductive Charging

- Wireless energy transfer
- · Limited Power, up to 20kW
- Efficiency slightly higher than 90%
 - Still a niche solution for now

^{*}Charging time for 190km @ 80% SoC, assuming an avg EV battery capacity of 48kWh and an avg EV consumption of 20kWh/100km

01 / Charger at a Glance

Standards and Protocols for Charging

- In order to regulate and standardize AC and DC charging technologies several standards and IEC norms have been developed which co-exist worldwide: IEC-68151, IEC-62196, IEC61980, ISO1740 9:2020, SAEJ1772,...
 - IEC61851 refers to 'Electric Vehicle Conductive Charging Systems'.
 This standard defines four different **charging modes** to categorize the mode of power delivery, protection installation and communication/control
 - In North America, the standard is SAEJ1772. The SAEJ1772 establishes 3 charging levels to categorize the rated power, voltage and current
 - IEC 62196-2/3 defines the charger types, used to categorize the different socket-outlets used to deliver power
- There are three main charging protocols extended worldwide: the **CHAdeMO** ('charge de move'), the **Combined Charging System** (CCS) and the **Tesla Supercharger**. In China, the only standard and implemented protocol is the GB/T, and is also exclusive to the region

01 / Charger at a Glance

Combined Charging System (CCS)

- CharIN is dedicated to support and establish the Combined Charging system (CCS) as the standard for charging Battery Electric Vehicles (BEVs) of all kinds
- > VIN is CharIN regular member since 2018

Power Class	Power*	U _{min} in [V]	U _{max} in [V]	I min in [A]	I _{peak} in [A]	I rated in [A]	P reference in [kW]	Duration I _{peak}	Name (EN)
LPC	xx (kW)	≤200	≥920		<20	<20	<8	inf	Low-Power Charging
DC	xx (kW)	≤200	≥920	≤1	≥20	≥20	≥8	inf	DC Charging
FC	xxx (kW)	≤200	≥920	≤1	≥125	≥94	≥50	>=30 min	Fast Charging
UFC	xxx (kW)	≤200	≥920	≤5	≥250	≥188	≥100	>=20 min	Ultra-Fast Charging
HPC	xxx (kW)	≤200	≥920	≤5	≥500	≥375	≥150	>=10 min	High-Power Charging
MCS						TE	BD		

Position Paper / Recommendation of Charging Interface Initiative e.V. DC CCS Power Classes V7.1 2021-046-14

Megawatt Charging System (MCS)

To satisfy the market demand of the Truck and Bus industry to charge electric heavy-duty vehicles within a reasonable time, a new solution for high-power charging is needed

Status 10/2022:CharIN website lists an overall number of deployed CCS charging points of more than 59.6k

39k

CCS charging points in Europe.

5826

CCS charging points in North America.

13k

CCS charging points in Asia/Pacific.

Agenda

- 01 / Charger at a Glance
- 02 / Charger Trends
- 03 / Charger Market
- 04 / Power Converter Topologies
- 05 / Power Modules for DC Charger
- 06 / <u>DC Charger Concepts Vincotech</u> <u>reference designs</u>

02 / Charger Trends

DC-Charger Trends and Key Drivers

Charging will shift towards public and workplace options, as more people without access to home charging start to buy EVs.

There will be a growing need for **DC fast chargers** with nominal power >22kW in the next years

For high power chargers (>30kW):

- The **modular design** is dominant over the monolithic design approach thanks to its benefits of high design flexibility and scalability
- The **power module** solution is preferred rather than the discrete solution with the benefits of optimal thermal management, simplified mechanical assembly, and low parasitic inductance
- SiC power modules will gain 16% of the total power module market by 2025* driven by Charging Infrastructure and EV/HEV

*Yole report "Status of the power electronics industry: Market and Technology Report 2020"

Bi-directional charging

- Not yet a global trend
- V2L, V2G or V2H

Reliability

Mission profiles are getting harder

Modular design

 In the modular approach, a charger is built of several charger stacks connected in parallel

Efficiency: from today

95% to 98%

- WBG components are

playing a key roll to

achieve this goal

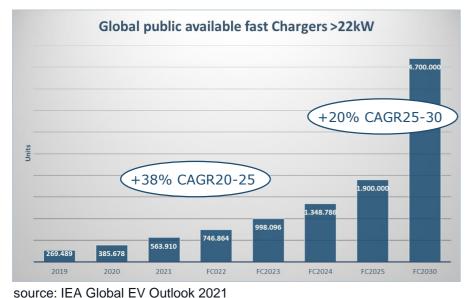
High power charging stations

- Fast charging
- Public charging and workplace charging
- Destination charging

Battery voltage 400V -> 800V

 Wide DC output voltage range (200V->920V)

Agenda


- 01 / Charger at a Glance
- 02 / Charger Trends
- 03 / Charger Market
- 04 / Power Converter Topologies
- 05 / Power Modules for DC Charger
- 06 / <u>DC Charger Concepts Vincotech</u> <u>reference designs</u>

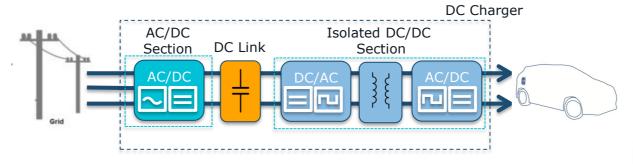
03 / Charger Market

Global Power Module Market

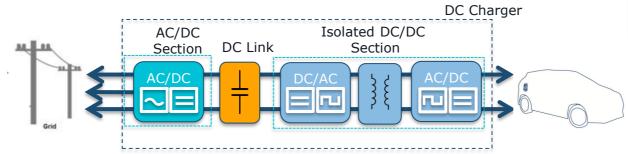
Vincotech

- / The growing EV/HEV market will drive the roll-out of charging infrastructure
- / Charging infrastructure and EVs/HEVs are showing by far the highest growth rates
- The global public available fast charger (>22kW) units are expected to growth from 564k units in 2021 to 1.900k units in 2025 which will be a 38% CAGR for the forecasted period. Compared with the 2021 report data it means a slightly cooling down. On the other hand for the forecasted period 2025-2030 the GAGR is expected to be higher compered with the last yer report
- / 50kW will remain the mainstream in the coming years. A big push is expected for DC chargers >200kW
- The global power module market for DC Chargers is expected to be 150M€ in 2025 gaining share against discrete solutions, which are dominating the Asia market

VIN estimation



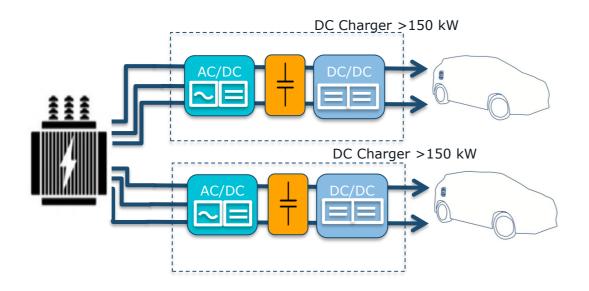
Agenda

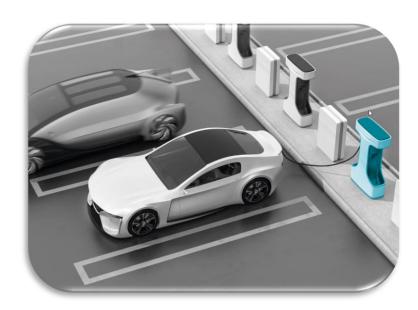

- 01 / Charger at a Glance
- 02 / Charger Trends
- 03 / Charger Market
- 04 / Power Converter Topologies
- 05 / Power Modules for DC Charger
- 06 / <u>DC Charger Concepts Vincotech</u> <u>reference designs</u>

DC-Charger System Architecture; Power/Charger <150kW

System Architecture 1: This is the **state-of-the-art system architecture** for DC Charger 10kW up to 350kW. Depending on output power, this can be a system built from one or more charger stacks (charger modules). Supply is taken from low-voltage 3-phase grid.

/ System Architecture 2: The same as system architecture 1 but **bi-directional**. It is mainly designed for V2x applications

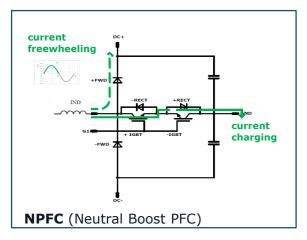


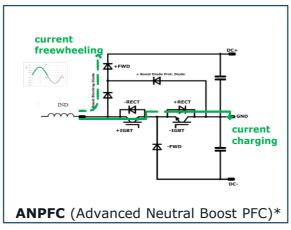


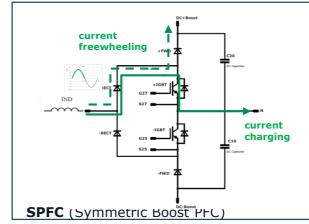
Vincotech

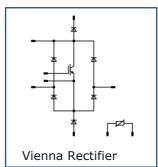
DC-Charger System Architecture; Power/Charger >150kW

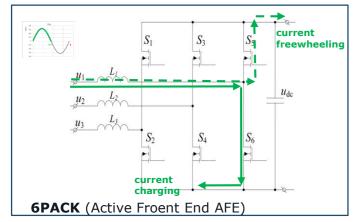
System Architecture 3: Design aimed to serve the higher power (>150 kW) market, e.g. charging parks. A medium-voltage transformer furnishes power directly to the system. Separated windings per charger needed on the secondary side of transformer. The advantages of this system architecture are system costs and efficiency






DC-Charger System Architecture; Three-phase PFC Topologies for AC/DC

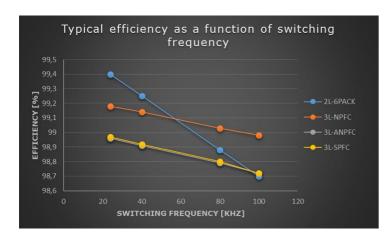


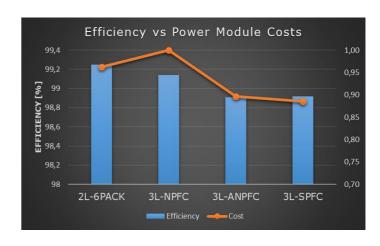


Common three-level (3L) PFC topologies for DC Charger for unidirectional charging

Common two-level (2L) PFC topology for DC Charger

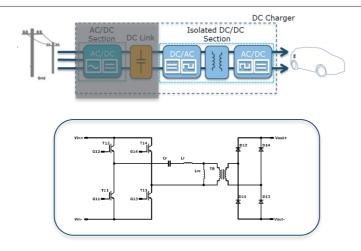
- There are several three-phase PFC topologies available which can be addressed with multiple 3L and 2L topologies with pros and cons in terms of efficiency, costs and design complexity
- / Each of these topologies will influence
 - the blocking voltage rating of the semiconductors e.g. 650 V or 1200 V and as a result, the switching losses and the efficiency
 - o the total system costs, e.g. PFC inductor size and costs
 - At a given frequency the current ripple at 2L is twice as high as in 3L applications which has an impact on the inductor core material and size
 - o the thermal management, e.g. heat sink size
 - the design e.g. uni- or bi-directional. For **bi-directional** charging the 3L SPFC and NPFC are suitable by replacing the boost diodes with switches, and the 2L 6pack per se

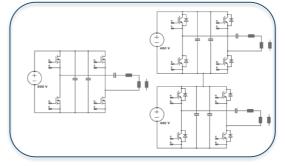

*Proprietary topology from Vincotech


DC-Charger System Architecture; Three-phase PFC Topologies for AC/DC

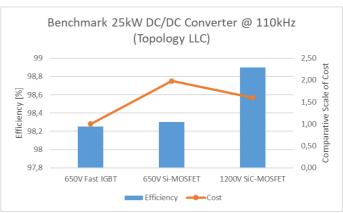
Benchmark of 2L vs 3L in terms of efficiency and power module costs

- / 30 kW Charger unit (Vin 230A, DC Link 800V, Ths 80°C, Tjmax <130°C)
- / Similar chip technology for the main devices
 - 2L-6PACK: 1200V/16mOhm SiC MOSFET
 - 3L-NPFC: 650V/22,5mOhm SiC MOSFET and 1200V/60A SiC Diode
 - 3L-ANPFC and -SPFC: 650V/22,5mOhm SiC MOSFET and 650V/60A SiC Diode




- 2L-6PACK is showing the best efficiency for fsw up to 60kHz, but has also high costs. The switching losses are limiting the
 efficiency at high switching frequencies
- NPFC has high efficiency also for higher fsw but with the drawback of higher costs because of the 1200V diodes
- ANPFC and SPFC are showing same efficiency, but ANPFC with single gate drive has a total cost advantage vs SPFC

DC-Charger System Architecture; LLC Topologies for DC/DC

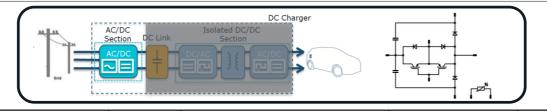


- / Resonant topologies are often preferred for the DC/DC section
 - Reduce switching losses
 - Increase efficiency
 - Galvanic isolation
- The full bridge LLC converter with full bridge rectifier is on of the most used configuration for unidirectional charging
- / It is a soft switching topology (ZVS, ZCS) resulting in a very high peak efficiency around the resonant frequency
- / Multiple variants can be used for primary and secondary side with additional advantages and compromises
- / For **bi-directiona**l charging the full bridge rectifier on the secondary side has to be replaced with a full bridge

Full bridge topologies: full bridge 1200V SiC MOSFET (left side), full bridge 650V fast IGBT in series (right side)

- ✓ The full bridge in series configuration (3-level) with the 650 V fast IGBT performs well in terms of both cost and efficiency
- ✓ If the application requires very high efficiency the full-bridge (2-level) with 1200 V SiC-MOSFET would be the configuration of choise. The price decrease of this chip technology over the last years favourites this option also from cost point of view

Agenda


- 01 / Charger at a Glance
- 02 / Charger Trends
- 03 / Charger Market
- 04 / Power Converter Topologies

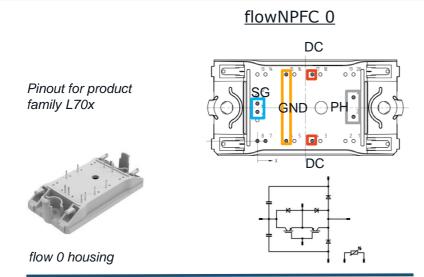
05 / Power Modules for DC Charger

06 / <u>DC Charger Concepts – Vincotech</u> <u>reference designs</u>

3L Three-phase PFC: flowNPFC Product Line (T-Type PFC)

Voltage	Product Line	Technology	Product Family	Part Number	1	[_{Cnom} [A]	Application Power rating*		202	2		20)23			202	24
					30	75	100		Q1	Q2 (23 Q	4 Q	1 Q2	Q3	Q4	Q1	Q2 (Q3 Q4
	flowNPFC 0	IGBT H5		10-FZ07LBA100SM01-L705L18				Up to 16 kW										
		IGBT H5/SiC SBD	L70x					Up to 28 kW										
650V	flowNPFC 1	IGBT S5/SiC SBD	M82x					Up to 55 kW										
		IGBT H5/SiC SBD	L39x	10-xY12NMB030SM-L394L08x				Up to 20 kW										
	flow3xNPFC 1	IGBT H5/CalI4F	L39x	10-TY12NMB030SM01-L394L18				Up to 14 kW										
Voltage	Product Line	SiC Inside Technology	Product Family	Part Number	RDS	on [m	Ohm]	Application Power rating*		202	2		20)23			202	24
					11	15	45		Q1	Q2 (23 Q	4 Q	1 Q2	Q3	Q4	Q1	Q2 (Q3 Q4
1200V	flowMNPC E2 SiC	full SiC-MOSFET	LS2x	10-EY12NMA011ME30-LS28F18T				Up to 75 kW										
	flowMNPC E2 SiC	full SiC-MOSFET	LJZX	10-EY12NMA016ME-LS28F16T	W			Up to 60 kW										
	flowMNPC 0 SiC	full SiC-MOSFET		***				Up to 30 kW										
650V	flowNPFC 0 SiC	SiC MOSFET/SiC SBD						Up to 33 kW										
	flowNPFC 1 SiC	SIC MOSFET/SIC SBD	M82x					Up to 60 kW										
	flow3xNPFC S3 SiC	SiC MOSFET/SiC SBD						Up to 50 kW						Or	ngoin	ıg R&	D Pro	oject

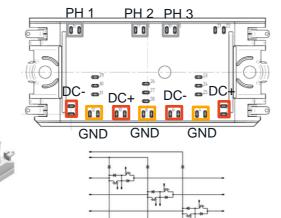
Product Concept


Serial Status

*Assuming a typical charging operation point: Vin 230V, Vout 700V, fsw 45kHz, Ths 80°C

Detailed product portfolio available at VIN web page: https://www.vincotech.com/products/by-topology/pfc-three-phase-applications.html

flowNPFC 0/1 Product Description



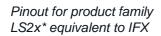
flow3xNPFC 1

Pinout for product family L39x

flow 1 housing

Function:

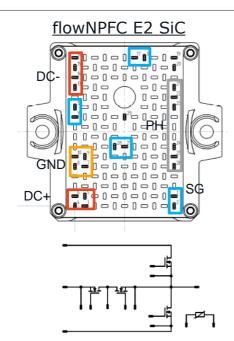
Neutral Power Factor Corrector (NPFC)

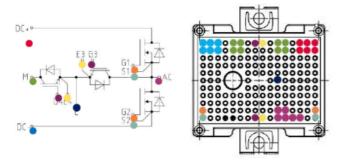

Features:

- Trenchstop5 H5 chip technology for high speed switching and high efficiency
- With fast recovery diodes or SiC Schottky body diodes
- / Integrated DC capacitor
- / Temperature sensor

- / 12mm and 17mm height
- / Solder and press-fit pins with Thermo-mechanical push-and-pull force relief
- Convex shaped substrate for superior thermal contact
- Pre-applied phase change material

flowMNPC E2 Product Description



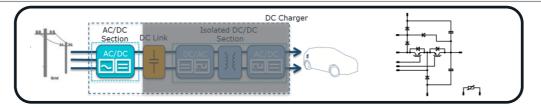


flow E2 housing

*Not optimal pinout for high frequency operation

New IFX pinout for NPC2 available e.g. F3L8MR12W2M1H(P)_B11

Function: Neutral Power Factor Corrector (NPFC)


Features:

- / SiC MOSFET Gen3 chip technology for high speed switching and highest efficiency
- For Bidirectional Chargers
- Integrated DC capacitors and gate resistors optional
- Temperature sensor

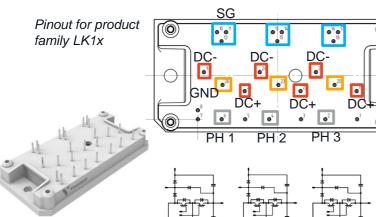
- / 12mm height
- Solder and press-fit pins with Thermo-mechanical push-and-pull force relief
- Convex shaped substrate for superior thermal contact
- / Pre-applied phase change material

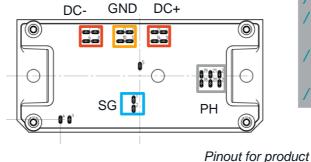
Voltage	Product Line	Technology	Product Family	Part Number	1	[Cnom [/	A]	Application Power rating*		20				202				202		
					30	50	100		Q1	Q2	Q3	Q4	Q1	Q2	Q 3	Q4	Q1	Q2	Q3 C	Q4
	flowANPFC 0	IGBT fast	LK3x	10-PZ07ANA100RG02-LK39L88Y				Up to 22 kW												
		IGBT fast/SiC SBD		10-PZ07ANA100RG03-LK39L38Y			,	Up to 27 kW												
	flowANPFC 1	IGBT fast/SiC SBD	LH2x	10-PY07ANA100RG01-LH23L68Y			•	Up to 35 kW												
650V		IGBT S5/SiC SBD						Up to 50 kW												
0301	flow3xANPFC 1	IGBT fast	LK1x	10-FY073AA030RG02-LK12L08 10-FY073AA050RG01-LK14L08				Up to 11 kW												
		IGBT fast/SiC SBD		10-PY073AA050RG02-LK14L03Y				Up to 15 kW												
	flow3xANPFC 2	IGBT fast/SiC SBD	LN5x	30-PT073AA100SM02-LN55L88Y				Up to 30 kW												
Voltage	Product Line	SIC Inside Technology	Product Family	Part Number	RDS	on [m	Ohm]	Application Power rating*		20	22			202	23			202	24	
					11	15	22,5		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3 Q	Q4
650V	flowANPFC 1 SiC	IGBT fast/SiC SBD	LH2x					Up to 60 kW												

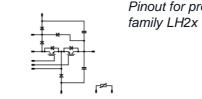
Ongoing R&D Project

Product Concept

Serial Status


*Assuming a typical charging operation point: Vin 230V, Vout 700V, fsw 45kHz, Ths 80°C


flowANPFC 0/1 Product Description

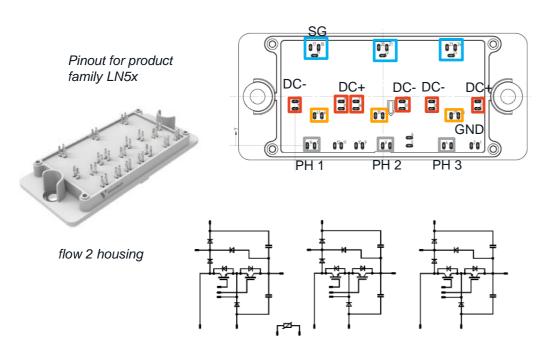


Pinout for product family LK3x flow 0 housing

flow3xANPFC 1 flowANPFC 1

Function: Advanced Neutral PFC (ANPFC)

Features:

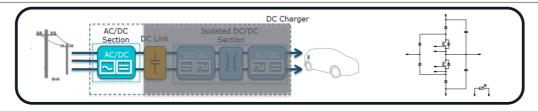

- Three-level high efficient topology
- Fast IGBT chip technology for high speed switching and high efficiency
- / With fast recovery diodes or SiC Schottky body diodes
- / Integrated DC capacitor
- / Temperature sensor

- / 12mm and 17mm height
- Solder and press-fit pins with Thermo-mechanical push-and-pull force relief
- Convex shaped substrate for superior thermal contact
- Pre-applied phase change material

flowANPFC 2 Product Description

flow3xANPFC 2

Function: Advanced Neutral PFC (ANPFC)


Features:

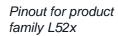
- / Three-level high efficient topology
- Fast IGBT chip technology for high speed switching and high efficiency
- With fast recovery diodes or SiC Schottky body diodes
- / Integrated DC capacitor
- Temperature sensor

- / 12mm height housing
- Solder and press-fit pins with Thermo-mechanical push-and-pull force relief
- Convex shaped substrate for superior thermal contact
- / Pre-applied phase change material

Voltage	Product Line	Technology	Product	Part Number	I	Cnom [/	A]	Application Power		20	22			2023			20	24
			Family		50	75	100	rating*	Q1	Q2	Q3	Q4	Q1	Q2 Q3	Q4	Q1	Q2	Q3 Q4
	flowSPFC 0	IGBT H5	L52x	10-FZ071SA050SM02-L524L18														
650V				10-FZ071SA075SM02-L525L18				Up to 25 kW										
6504				10-FZ071SA100SM02-L526L18														
		IGBT S5		10-FZ071SA075S501-L525L58				Up to 22 kW										

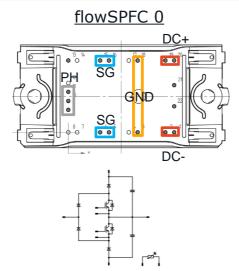
Voltage	Product Line	Technology SIC Imside	Product Family	Part Number	RDS	on [m(Ohm]	Application Power rating*		2022		2	2023			2024	ļ
					11	15	22,5		Q1	Q2 Q3	Q4	Q1 Q	2 Q3	Q4	Q1 (Q2 Q	3 Q4
650V	flowSPFC 1 SiC	SIC MOSFET/SIC SBD				·		Up to 60 kW									

Ongoing R&D Project


Product Concept

Serial Status

*Assuming a typical charging operation point: Vin 230V, Vout 700V, fsw 45kHz, Ths 80°C

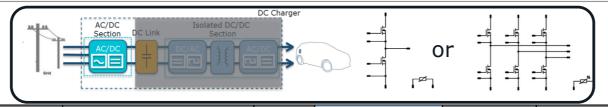

flowSPFC 0 Product Description

flow 0 housing

Function:

Symmetric Power Factor Corrector (SPFC)

Features:


- Trenchstop5 H5/S5 chip technology for high speed switching and high efficiency
- With fast recovery diodes or SiC Schottky body diodes
- / Kelvin Emitter for improved switching performance
- / Integrated DC capacitor
- Temperature sensor

- / 12mm and 17mm height
- / Solder and press-fit pins with Thermo-mechanical push-and-pull force relief
- Convex shaped substrate for superior thermal contact
- / Pre-applied phase change material

2L Three-phase PFC: fastDUAL and flowPACK Product Line

Voltage	Product Line	Technology	Part Number	Product Family		R _{DSoi}	_n [m(Ohm)	1	Application Power rating*			22			20				202		
			<u>ie</u>		2	5	8	16	32	• • •	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2 (Q3	Q4
	flowDUAL E1 SiC	SiC MOSFET Gen3	10-EZ122PA016ME-LJ67F68T	 Ы6х						up to 40 kW												
	flowDUAL E1 SiC	SiC MOSFET Gen3	10-EZ122PB032ME-PE07F18T	PE0x		M																
1200V	flowDUAL E2 SiC		10-EY122PA005ME-LU39F08T 10-EY122PA008ME-LU38F08T	1						> 50 kW												
	flowDUAL E3 SiC	SiC MOSFET Gen3																				

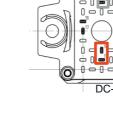
Voltage	Product Line	Technology	Part Number	Product Family	R	DSon	[mC	Ohm]	Application Power rating*		202	2			202	23			20	24	
	8	IC Insid			16	20	35	40	75	rating*	Q1	Q2	Q3 (Q4 (Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
		SiC MOSFET Gen3	10-PY126PA016ME-L227F13Y							up to 22 kW												
1200V	flowPACK 1 SiC	SiC MOSFET Gen3	10-PY126PA040MR-L226F28Y 10-PY126PA020MR-L227F28Y	LZZX						up to 22 kW												
	flowPACK E1 SiC	SiC MOSFET Gen3	10-EZ126PB075ME-LS17F08T	LS1x						up to 11 kW												
900V		SiC MOSFET Gen3	10-PY096PA035ME-L224F18Y	L22x						up to 22 kW							ngoi	na R	.&D P	roie	ct	

Detailed product portfolio available at VIN web page:

https://www.vincotech.com/products/by-topology/topology/sixpack.html https://www.vincotech.com/products/by-topology/topology/half-bridge.html

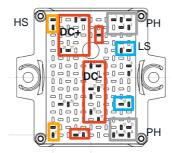
*Assuming a typical charging operation point: Vin 230V, Vout 700V, fsw 40kHz, Ths 80°C

Product Concept
Serial Status


flowDUAL SiC E1/E2 (Half-Bridge) Product Description

flowDUAL E1 SiC

flow E1 housing



Pinout for product family LJ6x (equivalent to FF11MR12W1M1_B11 and FF23MR12W1M1_B11; not equivalent to FF45MR12W1M1_B11)

flowDUAL E2 SiC

flow E2 housing

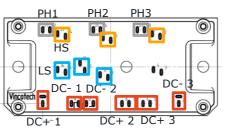
Pinout for product family LU3x (equivalent to FFxxMR12W2M1_B11)

Function: Half-Bridge

Features:

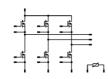
- Latest SiC chip technologies for high switching and high efficiency
- Kelvin emitter for improved switching performance
- / Industry standard pinout
- / Temperature sensor

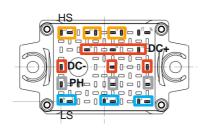
- / Industry standard 12mm housing
- Solder and press-fit pins with Thermomechanical push-and-pull force relief
- Convex shaped substrate for superior thermal contact
- / Pre-applied phase change material


flowPACK SiC 1/E1 (Sixpack) Product Description

flowPACK 1 SiC

flow 1 housing

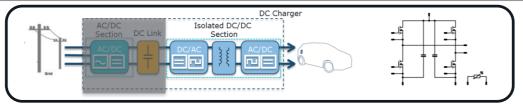

Pinout for product family L22x


flowPACK E1 SiC

flow E1 housing

Pinout for product family LS1x (equivalent to FSxxMR12W1M1_B11)

Function: Sixpack


Features:

- Latest SiC chip technologies for high switching and high efficiency
- / Sixpack with three separated legs
- Kelvin Emitter for improved switching performance
- / Industry standard pinout
- / Temperature sensor

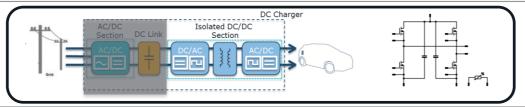
- 12mm and 17mm height
- Solder and press-fit pins with Thermomechanical push-and-pull force relief
- / Convex shaped substrate for superior thermal contact
- / Pre-applied phase change material

DC-DC fastPACK (H-Bridge) Product Line

Voltage	Product Line	Technology	Product Family	Part Number		I _{Cnom}	[A]		Application Power rating*		202	22			202				202	24
					15 3	0 40 50	75 80	100		Q1	Q2	Q3	Q4	Q1	Q2 (Q3 (Q4	Q1	Q2	Q3 Q4
4200	fastPACK 0	IGBT4 HS	P62x, P72x	V23990-P627-F8x-PM 10-FZ124PA040F2-P629F38 V23990-P629-F48-PM V23990-P729-F4x-PM					up to 11 kW											
1200V		IGBT fast H	P62x	10-FZ124PA040F2-P629F38					up to 11 kW											
	fastPACK 1	IGBT4 HS	L58x	10-xY124PA040SH-L588F48 10-xY124PA080SH-L589F48					up to 22 kW											
		IGBT fast H		10-FY124PA080F2-L589F38					up to 22 kW											
650V	fastPACK 0	IGBT5 H5	P62x, L62x	10-xZ074PA030SM-L623F08x 10-xZ074PA050SM-L624F08 V23990-P623-F5x-PM 10-xx074PA075SM-L625F0xx					up to 22 kW											
		IGBT fast RGW	L62x	10-FZ074PA050RG-L624F88 10-PZ074PA075RG-L625F88Y	W				up to 22 kW											
	fastPACK 1	IGBT5 H5	L58x	10-xY074PA100SM-L583Fxx				•	up to 30 kW											

Ongoing R&D Project

roduct Concept


Serial Status

Detailed product portfolio available at VIN web page: https://www.vincotech.com/products/by-topology/h-bridge.html

^{*}Assuming a typical charging operation point: Vin 700V, Vout 480V, fsw 100kHz for SiC, Ths 80°C

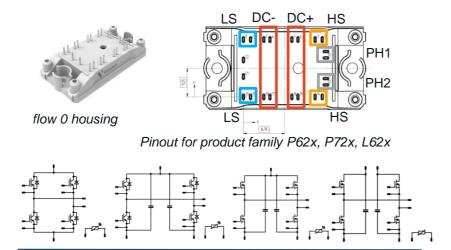
DC-DC fastPACK SiC (H-Bridge) Product Line

Voltage	Product Line	Technology	Product Family	Part Number			R _{DSon}	mOh:	m]		Application Power rating*		20	22			202	3		20	024	
					11	16 1	7 18	20 32	2 35	40 75	rucing	Q1	Q2	Q3	Q4	Q1	Q2 (23 Q	4 Q:	L Q2	2 Q3	Q4
	fastPACK 0 SiC	SiC MOSFET Gen3	L62x	10-PZ124PA032ME03-L629F98Y 10-PZ124PA075ME03-L627F28Y							up to 11 kW											
	fastPACK E1 SiC	SiC MOSFET Gen3	LQ1x	10-EZ124PA016ME-LQ18F18T 10-EZ124PA032ME-LQ17F18T							up to 25 kW											
1200V		SiC MOSFET Gen4	LR0x	10-EZ124PA018MR-LR09F08T	ev	y					up to 22 kW											
	fastPACK 1 SiC	SiC MOSFET Gen3	L58x								up to 50 kW											
	fastPACK E2 SiC	SiC MOSFET Gen3	LP4x	10-EY124PA011ME-LP40F18T 10-EY124PA016ME-LP49F18T							up to 50 kW											
950V	fastPACK 0 SiC	SiC MOSFET Gen3	L62x	10-xx094PB017ME02-L620F3xx 10-PC094PB035ME02-L629Fx6Y							up to 16 kW											
650V	fastPACK 1	Si MOSFET CFD7	L58x	10-PY064PA020F7-L582L88Y 10-PY064PA040F7-L581L88Y	A)@	W																
	fastPACK 1 SiC	SIC MOSFET	LQ1x	10-EZ074PA021UF01-LQ18F98T							up to 15 kW											

Ongoing R&D Project

Product Concept

Serial Status


Detailed product portfolio available at VIN web page: https://www.vincotech.com/products/by-topology/h-bridge.html

^{*}Assuming a typical charging operation point: Vin 700V, Vout 480V, fsw 100kHz for SiC, Ths 80°C

fastPACK 0/1 SiC (H-Bridge) Product Description

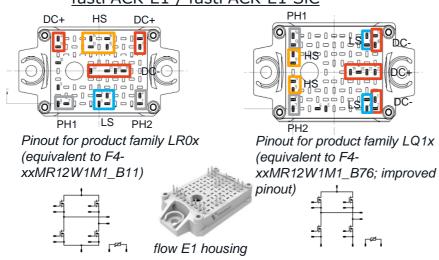
fastPACK 0 / fastPACK 0 SiC

fastPACK 1; fastPACK 1 SiC

Function:

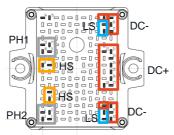
H-Bridge (full bridge)

Features:


- Latest Si and SiC chip technologies for high switching and high efficiency
- Integrated DC capacitor
- Open emitter configuration
- Kelvin emitter for improved switching performance
- Temperature sensor

- 12mm and 17mm height
- Solder and press-fit pins with Thermo-mechanical push-and-pull force relief
- Convex shaped substrate for superior thermal contact
- Pre-applied phase change material

fastPACK E1/E2 SiC (H-Bridge) Product Description

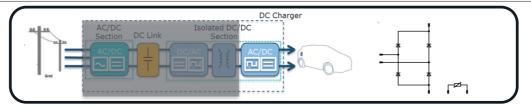

fastPACK E1 / fastPACK E1 SiC

fastPACK E1; fastPACK E1 SiC

flow E2 housing

Pinout for product family LP4x (equivalent to F4-xxMR12W2M1_B11; not released at IFX web page vet)

Function: H-Bridge (Full Bridge)


Features:

- / Latest Si and SiC chip technologies for high switching and high efficiency
- / Integrated DC capacitor
- Open emitter configuration
- Kelvin emitter for improved switching performance
- / Industry standard pinout
- / Temperature sensor

- / Industry standard 12mm housing
- Solder and press-fit pins with Thermo-mechanical push-and-pull force relief
- Convex shaped substrate for superior thermal contact
- / Pre-applied phase change material

DC-DC fastPACK (Ultrafast Rectifier) Product Line

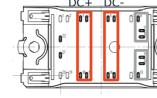
Voltage	Product Line	Technology	Product	Part Number					\mathbf{I}_{Cnon}	1 [A]				Application		20	22			20	23			202	24	
Voitage	Froduct Line	recimology	Family	rait Number	10	18	20	30	60	80	10	0 1	.20 1	60	Power rating*	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	QЗ	Q4
1700V	fastPACK E1 SiC	SiC SBD	LS0x	10-EZ174RA018RO-LS07J83T											up to 13 kW												
	fastPACK 0 SiC	SiC SBD	LH0x	10-PZ12ORA100RO-LH00J88Y											up to 30 kW												
1200V	fastPACK 1	Fast Diode	LH0x	10-PY120RA060VH-LJ92I08Y 10-PY120RA060VH01-LJ92I03Y 10-PY12ORA100CA-LJ95I03Y 10-PY12ORA120VH-LJ96I03Y											up to 35 kW												
	fastPACK 1 SiC	SiC SBD	IJ5x												up to 50 kW												
	fastPACK E1 SiC	SiC SBD	LS0x	10-EZ124RA010RO-LS06J88T 10-EZ124RA030RO-LS08J88T											up to 25 kW												
	fastPACK E2 SiC	SIC SBD	LP4x												up to 50 kW												
650V	fastPACK 0 SiC	SiC SBD	LH0x	10-PZ07O2A020RO-LH01J88Y											up to 15 kW												
USUV	fastPACK 1	Fast Diode	IJ5x	10-PG07ORA160RF-LJ53I88T											up to 50 kW												

Ongoing R&D Project

Product Concept

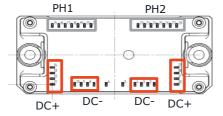
Serial Status

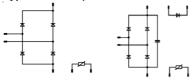
Detailed product portfolio available at VIN web page: https://www.vincotech.com/products/by-topology/ultrafast-rectifier.html


^{*}Assuming a typical charging operation point: Vin 700V, Vout 480V, fsw 100kHz for SiC, Ths 80°C

fastPACK 0/1 SiC (Ultrafast Rectifier) Product Description

fastPACK 0 / fastPACK 0 SiC


Pinout for product family LH0x


fastPACK 1; fastPACK 1 SiC

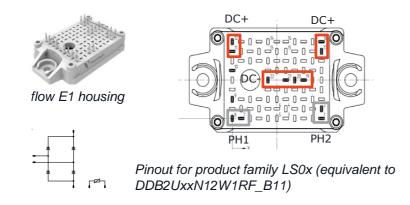
Pinout for product family LJ5x* (LJ9x with bypass Diode)

Function: Bridge Rectifier

Features:

- Latest Si (fast) and SiC chip technologies for high switching and high efficiency
- / Integrated DC capacitor
- Optional bypass diode
- / Thin DCB for enhanced thermal performance
- / Temperature sensor

Housing:


- / 12mm and 17mm height
- / Solder and press-fit pins with Thermomechanical push-and-pull force relief
- / Convex shaped substrate for superior thermal contact
- Pre-applied phase change material

*Thin DCB and thin pin (T)

fastPACK E1 SiC (Ultrafast Rectifier) Product Description

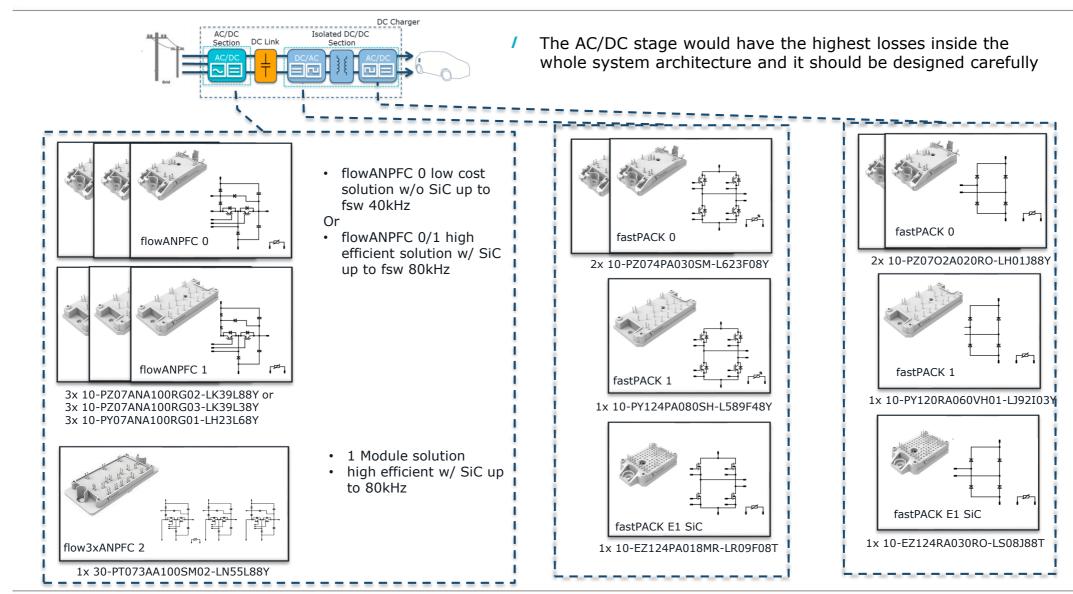
fastPACK E1 / fastPACK E1 SiC

Function: H-Bridge (Full Bridge)

Features:

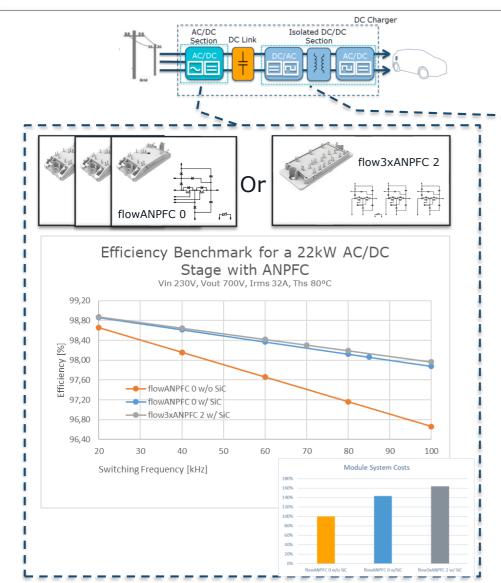
- Latest Si (fast) and SiC chip technologies for high switching and high efficiency
- / Integrated DC capacitor
- / Industry standard pinout
- / Temperature sensor

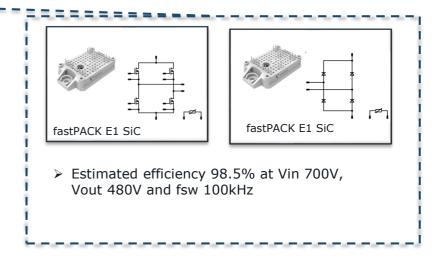
- / Industry standard 12mm housing
- / Solder and press-fit pins with Thermo-mechanical push-and-pull force relief
- / Convex shaped substrate for superior thermal contact
- / Pre-applied phase change material


Agenda

- 01 / Charger at a Glance
- 02 / Charger Trends
- 03 / Charger Market
- 04 / Power Converter Topologies
- 05 / Power Modules for DC Charger

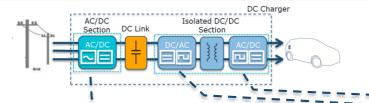
06 / <u>DC Charger Concepts – Vincotech</u> <u>reference designs</u>


Vincotech

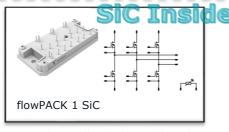

22kW-25kW Uni-directional DC Charger Design Proposals

Vincotech

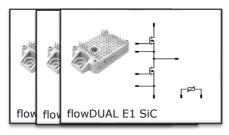
22kW Uni-directional DC Charger Design Proposals



For a 22kW DC Charger the ANPFC topology is proposed as a high efficiency and cost competitive solution

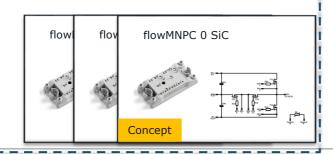

Vincotech

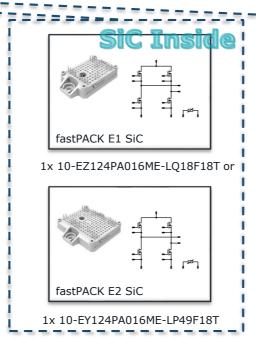
25kW full-SiC bi-directional DC Charger Design Proposals



Scalable in 25kW steps for higher power

 1 Module or 3x Module solution with 2-level topology

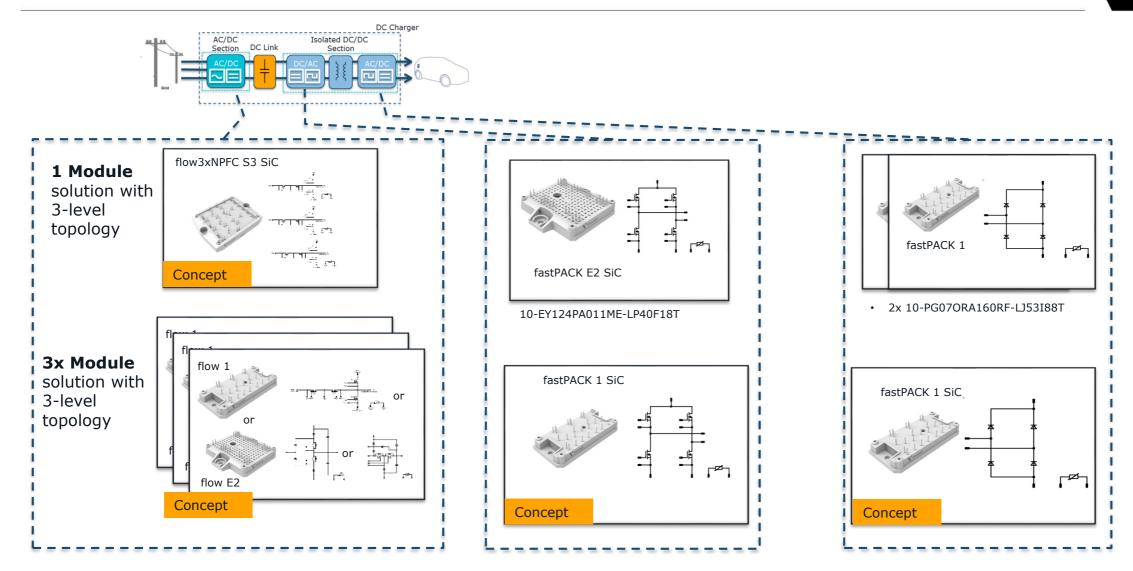


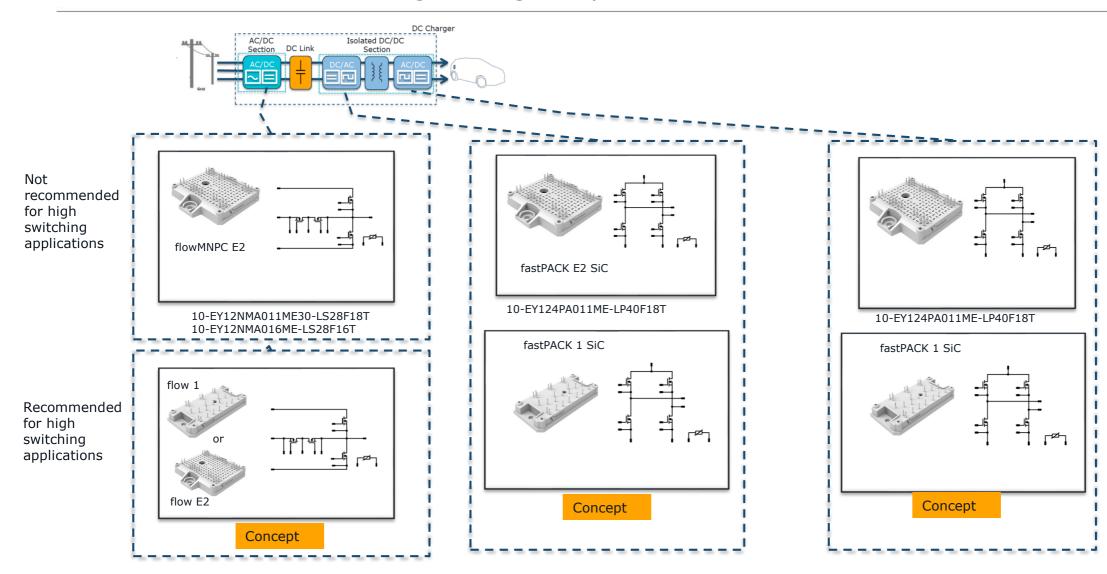

1x 10-PY126PA016ME-L227F13Y



10-EZ122PA016ME-LJ67F68T

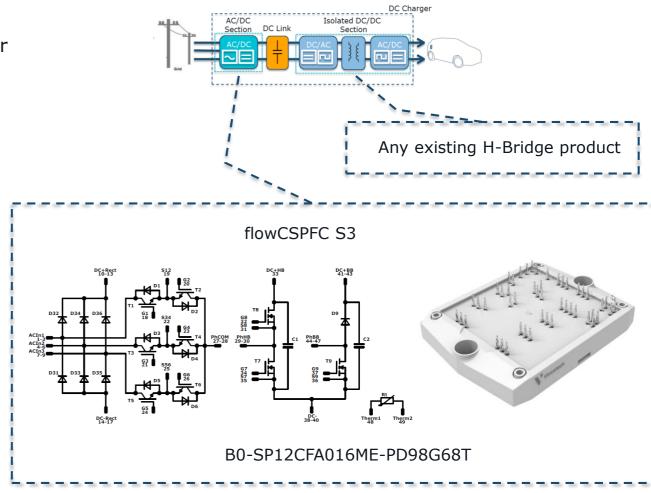
• 3 x Module solution with 3-level topology




Vincotech

50kW Uni-directional DC Charger Design Proposals

Vincotech


50kW Bi-directional DC Charger Design Proposals

New PFC Concept Proposal for DC Charger

- / New Current Synthesizing PFC (CSPFC) topology for highest efficiency at lowest total system costs through
 - Reduced number of SiC devices
 - Reduced number and size of the PFC inductors
- Latest SiC-MOSFET chip technology for high speed switching and high efficiency up to 100 kHz and >99% respectively
- / Bi-directional ready
- / Thin Al₂O₃ substrate eases the system's thermal design
- / Temperature sensor

EMPOWERINGYOURIDEAS