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ABSTRACT 

 
Finite-control-set model predictive control (FCS-MPC) is 

currently a widely used control method in power electronic 

converters. However, it is difficult for MPC to control the 

topology like modular multilevel converter (MMC). The main 

reason is that the increase of possible switching states 

increases the computation burden of FCS-MPC, making it 

difficult to traverse all switching states in one control cycle. 

To solve this problem, this paper designs an FCS-MPC based 

artificial neural network (ANN) controller to reduce the 

computation burden, and proposes a dual-module structure to 

increase the imitation accuracy of ANN. The simulation result 

shows that the imitation accuracy of our design is significantly 

increased up to 99.87%. The computation burden is reduced 

over 50% compared with FCS-MPC. 

 
1. Introduction 

  
Finite control set model predictive control (FCS-MPC) is a 

powerful technique used to regulate power converters. This 

approach provides a versatile and straightforward method to 

handle complex control problems while considering system 

limitations [1]. FCS-MPC has emerged as a promising option 

for controlling modular multi-level converters (MMC), 

showcasing notable benefits such as increased power 

capacity, reduced harmonic distortions, and simplified 

scalability [2]. 

However, as the number of output levels and prediction 

periods increases, the computational burden of Finite Control 

Set Model Predictive Control (FCS-MPC) imposes limitations 

on the performance of Modular Multi-Level Converters 

(MMC). Researchers have conducted extensive research to 

alleviate this computational burden [8][9][10]. Some approaches, 

such as filtering the switch state based on neighboring 

switching combinations [11] and grouping submodules while 

considering adjacent voltage level evaluation [12], have been 

proposed within the framework of traditional Model Predictive 

Control (MPC) to reduce the computational load. However, in 

cases where MMC topology is complex and the effective 

reduction of candidate states is challenging, these methods 

still impose significant computational burdens. Consequently, 

machine learning (ML)-based methods have been proposed 
[13], which do not rely on traversing candidate states. ML 

techniques, particularly Artificial Neural Networks (ANNs), 

have shown promise in power electronics due to their ability 

to handle nonlinearity and process data effectively [14] The 

structure of the ANN network plays a crucial role in 

determining its performance [14]. 

In this paper, we firstly present a novel assessment method 

for the ANN. Subsequently, we propose a dual-module 

controller structure that utilizes both the ANN and FCS-MPC. 

The ANN is employed to reduce the state space for FCS-

MPC. Through simulations, our design achieves satisfactory 

control effectiveness while minimizing computational 

workload. Compared to conventional FCS-MPC, our design 

reduces computational burden by up to 58.8% and increases 

imitation accuracy to 99.87%. 

 

2. MODEL EXPLANATION 
 

2.1 Three-level NPC converter 

The three-level neutral-point clamped (NPC) converter is 

used in this paper as is shown in Fig. 1 and Table. 1.  

 
Fig.1 Topology of three-level NPC converter 

 

Table 1 System parameters of three-level NPC converter 
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2.2 FCS-MPC design 

The traditional FCS-MPC control relies on the cost 

function. This paper introduces control objectives that 

encompass output current tracking and DC-link voltage 

balancing. The cost function in the 𝛼-𝛽 axis is presented as 

follows: 

 

𝑔 = 𝜔1(𝑖𝛼
∗ − 𝑖𝛼

𝑃)2 + 𝜔2(𝑖𝛽
∗ − 𝑖𝛽

𝑃)
2

+ 𝜆𝐷𝐶|𝑉𝐶1
𝑃 − 𝑉𝐶2

𝑃 | (1) 

 

In the context of this paper, 𝑔 represents the cost function 

for FCS-MPC. 𝑖 denotes the current, and 𝑉 represents the 

voltage. Variables with the superscript 𝑃  indicate the 

predicted values for the next time step, while those with the 

superscript ∗ represent the reference values. 𝜔1 , 𝜔2, and 

𝜆𝐷𝐶 are weight coefficients used to adjust the proportion of 

each component in the cost function. For this particular paper, 

and 𝜔1 and 𝜔2 are set to 1, while 𝜆𝐷𝐶  is set to 0.1. The 

prediction value for the topology discussed in this paper is 

calculated as follows: 

 

𝑖𝑃(𝑘 + 1) = (1 − 𝑅𝑔

𝑇𝑠

𝐿𝑔
) 𝑖(𝑘) +

𝑇𝑠

𝐿𝑔
(𝑣(𝑘) − 𝑒(𝑘)) (2) 

𝑣𝑜
𝑃(𝑘 + 1) = 𝑣𝑜(𝑘) −

𝑇𝑠

𝐶
(𝑖𝑎𝑏𝑐)𝑇|𝑣𝑎𝑏𝑐| (3) 

 

During each control cycle, the controller explores the state 

space and chooses the state with the lowest cost as the 

control output for the next time step. In the case of the three-

level topology discussed in this paper, there are 27 possible 

states, resulting in a state space size of 27.  

 

2.3 ANN design 

The ANN in this study is composed of fully connected 

layers and can be applied to various problems, including 

classification. By considering the control problem as a 

classification problem, the ANN can achieve similar control 

effects as FCS-MPC. The structure of the ANN is illustrated 

in Figure 2. To highlight the superiority of our design, the 

ANN's structure is intentionally kept simple, consisting of one 

input layer with 7 neurons, one hidden layer with 5 neurons, 

and one output layer with 27 neurons. 

 

 
Fig.2 ANN structure 

 
2.4 TOP-n accuracy 

In addition to the correct classification rate, model 

performance evaluation indicators include the TOP-n 

accuracy. The TOP-n accuracy assesses whether the n 

categories with the highest probabilities include the correct 

results for a classification problem. This metric provides a 

more relaxed evaluation of the neural network's performance 

and introduces different possibilities for the training objective 

of the network. 

When n is equal to 1, the TOP-n accuracy is equivalent to 

the classification accuracy. However, as n increases and 

approaches the total number of categories, the TOP-n 

accuracy reaches 100%. This means that when n is set to the 

number of categories, the model is considered to have 

correctly classified the samples. 

 

3. DUAL-MODULE FCS-MPC 

 
3.1 Main idea 
The main steps this work are as follows: 

Training: 

1. use FCS-MPC to generate the training set and train ANN. 

2. find 𝑛 which makes ANN’s accuracy close to 100% 

according to TOP-n accuracy 

Operating: 

1. use ANN as the main controller, record TOP-n states 

and final state. 

2. reselect final state based on FCS-MPC among 𝑛 states. 

3. generate the final state. 

 

3.2 ANN-MPC explanation 
The ANN is used as the filter for FCS-MPC to reduce the 

state space size. As is shown in Fig. 3, the control parameters 

are fed into both ANN and FCS-MPC. After the ANN generate 

the candidate states, FCS-MPC will traverse the reduced 

state space to generate the final output. 

It introduces extra computation burden from FCS-MPC 

compared to single ANN, although the computation burden is 

still significantly reduced compared to conventional FCS-

MPC. 

 

4. Simulation results 

 
The accuracy of FCS-MPC is set to 100% as reference. 

For single ANN, the imitation accuracy is 82.65%. For dual-

module FCS-MPC, imitation accuracy is 99.87% 

 

4.1 Computation burden 
The computational burden is estimated by counting the 

number of operations performed in each cycle. For the 

specific topology and cost function described in this paper, it 

takes 45 computations to calculate the cost function for one 

switch state in FCS-MPC. In one control cycle, FCS-MPC 

requires a total of 1,215 computations. On the other hand, a 

single ANN only requires 275 computations to complete a 

control step. 

For dual-module FCS-MPC-based mode, additional 

computations are needed to enhance accuracy, resulting in a 

computational burden of 500, which is still much lower than 
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that of conventional FCS-MPC. It's important to note that the 

overall computational burden for the entire task will increase 

because of the help from FCS-MPC. 

 

4.2 Control effect and THD 
We conducted simulations using the dual-module controller 

to control the three-level converter. Based on the results 

shown in Figure 3, our design demonstrates satisfactory 

control performance. The Total Harmonic Distortion (THD) 

value is successfully maintained below 4%, and the DC link 

voltage is fully balanced. These outcomes indicate that our 

design effectively achieves acceptable control performance 

for the considered system. 

 

 
Fig.3 Control performance 

 
5. Conclusion 

 
We designed a cascade operated FCS-MPC assisted by 

ANN, which can show acceptable control performance 

with low computation burden. 
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