## EV추진 150kW급 인버터 적용을 위한 IGBT 및 SiC 전력모듈 스위칭 특성 비교

황대연, 박상민, 노용수, 현병조, 박준성 한국전자기술연구원 전력제어시스템 연구센터

# Comparison of IGBT and SiC power module switching characteristics for EV propulsion 150kW inverter application

Dae Yeon Hwang, Sang Min Park, Yong-Su Noh, Byong Jo Hyon, Joon Sung Park Korea Electronics Technology Institute (KETI)

#### ABSTRACT

본 논문은 EV 추진용 150kW급 인버터 적용을 위한 IGBT 와 SiC 전력반도체 모듈의 스위칭 특성 및 손실을 비교한다. 특성 비교를 위해 1200V/600A 사양의 동일 패키지의 전력 모 듈을 선정하였으며, Double Pulse Test를 통해 두 전력 모듈의 스위칭 특성을 분석하고 스위칭 손실을 비교한다. 비교 시험을 통해 각 모듈 별 스위칭 손실을 측정하고, IGBT 모듈 및 SiC 모듈의 스위칭 특성을 분석하였다.

#### 1. 서 론

최근 전기자동차, PAV/UAV 드론과 같은 효율적이고 배출 이 적은 운송수단에 대한 수요가 증가함에 따라 배터리 전력을 기반으로 하는 전기추진시스템의 연구 및 개발이 크게 증가하 고 있다. 특히 전기자동차 분야에서는 배터리 충전 효율 향상 및 트랙션 전동기 구동 범위 확장을 위해 기존 배터리 전압 400V에서 800V로 증가하는 추세이며, 이에 따라 배터리의 DC 전력을 전동기를 구동하기 위한 AC 전력으로 변환시키는 인버 터 시스템의 전력반도체의 전압 범위 또한 확장되고 있다.

기존 EV 인버터 시스템에서는 일반적으로 Si 계열의 전력 반도체인 IGBT(Insulated Gate Bipolar Transistor)를 활용하였 으나, 최근 Si 계열 소자에 비해 고효율, 고출력밀도 등 우수한 장점을 갖는 WBG(Wide Band Gap) 소자 기반의 전력반도체 의 공급과 연구가 활발히 진행됨에 따라 기존 IGBT에서 SiC 기반의 전력반도체를 EV 구동 인버터에 탑재하는 추세이다[1].

본 논문은 EV 추진용 150kW급 인버터에 적용하기 위한 IGBT와 SiC 전력반도체의 스위칭 특성 및 손실을 비교한다. 각 모듈의 특성을 비교하기 위해 1200V/600A 사양의 Econodual3 패키지의 전력모듈을 선정하고, Double Pulse Test 를 통해 두 모듈의 스위칭 특성 및 손실을 비교 및 분석을 수 행한다.

#### 2. 전력반도체 모듈 선정

본 논문에서 선정한 EV 인버터 적용을 위한 전력반도체 모듈 및 게이트 드라이버 보드 장착 사진은 그림 1과 같이 나 타나며, 표 1은 전력 모듈 및 게이트 구동부의 주요 사양을 나 타낸다. 선정한 전력 모듈은 하프브릿지 타입으로 동일 패키지 및 동일 전압 전류 사양의 전력모듈로 선정하였다. 게이트 드 라이버의 경우 전력모듈의 게이트 전압 및 게이트 Turn-on/off 저항을 제외한 다른 특성은 동일하게 설정 하였다.



(a) (b) 그림 1 선정 전력 모듈 및 게이트 드라이버, (a) SiC, (b) IGBT Fig. 1 Selected Power Modules and Gate Drivers, (a) SiC, (b) IGBT

| <del>표</del> | 1 | 전력모듈-게이트드라이버 파라미터                   |
|--------------|---|-------------------------------------|
| Table        | 1 | Power module-Gate driver parameters |

| Parameter                           | IGBT                | SiC             |
|-------------------------------------|---------------------|-----------------|
| <br>ਨੀ ਸੀ                           | FF600R12ME4         | BSM600D12P3G001 |
| 5-15                                | (Infineon)          | (Rohm)          |
| 유형                                  | Half-bridge         | Half-bridge     |
| Drain-Source<br>Voltage/Current     | 1200V/600A          | 1200V/600A      |
| Gate Voltage<br>(Positive/Negative) | +15V/-15V           | +18V/-2.5V      |
| Gate Resistor<br>(on/off)           | 0.5\\2002/0.5\\2002 | 1.5Ω/1Ω         |

#### 3. 시험 결과

SiC 및 IGBT 전력모듈의 스위칭 특성 및 손실 분석을 위 해 DPT(Double Pulse Test)를 수행하였다.[2]. 그림 2는 DPT 시험의 기본 회로 구성과 스위칭 모드에 따른 전류의 흐름을 나타낸다.







그림 3 DPT 시험 환경 Fig. 3 DPT Experimental setup

DPT 시험 환경은 그림 3과 같으며 DPT 시험 조건은 DC-link 전압 600V, 인덕터 용량 100uH, DC 커패시터 용량 900uF에서 수행하였다. DPT 시험에서 첫 번째 펄스는 목표 전류까지 전류를 인가하는 역할을 하며 스위칭 특성 분석 및 손실 분석은 두 번째 펄스에서 나타난 파형을 토대로 분석을 수행한다. 그림 4와 그림 5는 IGBT와 SiC 전력 모듈의 두 번 째 펄스에서의 스위칭 특성 및 스위칭 손실을 나타낸다. IGBT 모듈의 경우 게이트 전압은 +15V/-15V를 인가하였으며, SiC 모듈의 게이트 전압은 +18V/-25V를 인가한다. 게이트 저항은 시험을 통해 RBSOA 영역에 위치하도록 시험하여 선정하였다. 인덕터 전류 600A, DC link 전압 600V 에서의 두 전력 모듈의 스위칭 특성과 스위칭 손실에 대한 결과는 표 2와 같이 나타난 다.

| 표     | 2 | IGBT - | SiC 모듈 DPT 시험 결과 (@600A) |
|-------|---|--------|--------------------------|
| Table | 2 | IGBT - | SiC module DPT Results   |

| Parameter | IGBT     | SiC      |
|-----------|----------|----------|
| Ids-pk    | 821 A    | 892 A    |
| Vds-pk    | 853 V    | 824 V    |
| Eon       | 66.81 mJ | 39.12 mJ |
| Eoff      | 36.24 mJ | 33.99 mJ |
| Trise     | 87.05 ns | 85.29 ns |
| Tfall     | 88.21 ns | 77.92 ns |



그림 4 IGBT 두 번째 펄스 파형 Fig. 4 Second Pulse waveform of IGBT



그림 5 SiC 두 번째 펄스 파형 Fig. 5 Second Pulse waveform of SiC

IGBT에 비해 SiC 전력 모듈의 di/dt는 더 빠르게 나타나고 Eon/Eoff 손실 성분 또한 작게 나타난다. 하지만 빠른 스위칭 으로 인해 각 부 기생인덕턴스 성분에 민감하므로 전압과 전류 의 링잉 성분이 나타나는 것을 확인 할 수 있으며, 다이오드의 리버스리커버리 성분의 전류 또한 IGBT에 비해 높게 나타나는 특성을 보인다.

4. 결 론

본 논문은 EV 추진용 150kW급 인버터 적용을 위한 IGBT 와 SiC 전력반도체 모듈의 스위칭 특성 및 손실을 비교 한다. 특성 비교를 위해 1200V/600A 사양의 동일 패키지의 전 력 모듈을 선정하였으며, DPT를 통해 두 전력 모듈의 스위칭 특성을 분석하고 스위칭 손실을 비교하였다. IGBT에 비해 SiC 전력 모듈의 스위칭은 더 빠르며, 스위칭 손실 또한 적게 나타 난다. 하지만 빠른 스위칭으로 인해 다이오드의 리버스 리커버 리 전류와 V<sub>DS</sub>전압의 링잉 성분이 나타나는 것을 확인하였다. 추후 연구 주제로 각 모듈을 결합한 인버터를 제작하여 효율 및 손실을 비교하는 것을 준비하고 있다.

이 논문은 2021년도 정부(산업통상자원부)의 재원으로 한국 에너지기술평가원의 지원을 받아 수행된 연구임 (20212020800020, 통합형 최적설계 플랫폼 기반 초고효율 전력변환시스템 개발)

### 참 고 문 헌

- [1] J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás and J. Rebollo, "A Survey of Wide Bandgap Power Semiconductor Devices," in IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2155–2163, May 2014.
- [2] S. S. Ahmad and G. Narayanan, "Double pulse test based switching characterization of SiC MOSFET," 2017 National Power Electronics Conference (NPEC), Pune, India, 2017, pp. 319–324.